Alberto Embedded & Open experience

Notes on my experience on Open Source Embedded Systems

Posts Tagged ‘mainline

Developing kernel on a Virtual Machine (the solution)

leave a comment »

I am working now on Ubuntu Karmic Koala.

As I said in my previous post, Qemu is a complete platform emulator that can emulate the Integrator ARM machine platform (CPU and devices!).

In Karmic Koala the latests Qemu version (0.11.0) is shipped within Ubuntu repositories so with this line we can install it:

# sudo apt-get install qemu qemu-kvm qemu-kvm-extras

ARM test images

From the Qemu home page we can download a Linux 2.6 ARM example image builded by Paul Brook and extracting it in $PRJROOT/images, we can find the README file where it is written how to launch the test platform:

# cp DownloadDirectory/arm-test-0.2.tar.gz $PRJROOT/images
# cd $PRJROOT/images
# tar -xvf arm-test-0.2.tar.gz
# cd arm-test
# cat README

So, with or without the graphical interface we can test the qemu arm installation with the followings:

# qemu-system-arm -kernel zImage.integrator -initrd arm_root.img
or
# qemu-system-arm -kernel zImage.integrator -initrd arm_root.img \
  -nographic -append "console=ttyAMA0"

A suitable Linux config file

Over the test purpose , executing the test image can give the kernel configuration file stored in /proc/config.gz ! so:

# qemu-system-arm -kernel zImage.integrator -initrd arm_root.img \
  -nographic -append "console=ttyAMA0"
Uncompressing Linux...............................................
........................... done, booting the kernel.
Linux version 2.6.17-rc3 (paul@wren) (gcc version 4.1.0 (CodeSourcery ARM))
 #53 Thu May 4 15:05:18 BST 2006
CPU: ARM926EJ-Sid(wb) [41069265] revision 5 (ARMv5TEJ)
Machine: ARM-IntegratorCP
Memory policy: ECC disabled, Data cache writeback
CPU0: D VIVT write-through cache
CPU0: I cache: 4096 bytes, associativity 4, 32 byte lines, 32 sets
CPU0: D cache: 65536 bytes, associativity 4, 32 byte lines, 512 sets
Built 1 zonelists
Kernel command line: console=ttyAMA0
PID hash table entries: 1024 (order: 10, 4096 bytes)
Console: colour dummy device 80x30
Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)
Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)
Memory: 128MB = 128MB total

...

Log in as root with no password.
qemu login: root
# cp /proc/config.gz .
# tar -xvf config.gz
# vi config.gz

With this file we can configure the mainline linux kernel! (copying from screen, copying within net, scrolling the options with a near mainline make menuconfig window).

ARMv5te Toolchain to build the kernel

The machine emulated by qemu-arm is based on the core ARMv5te , so I need the correct toolchain for build all the necessary code.

The Pengutronix OSELAS environment can do that in the OSELAS toolchain project. Similarly at what described in Initializing a Linux Embedded Development Host Machine moving in $PRJROOT/build-tools/OSELAS.Toolchain-1.99.3.4/ we can select the suitable ptxdist configs with:

# cd $PRJROOT/build-tools/OSELAS.Toolchain-1.99.3.4/
# ls ptxconfigs/
arm-1136jfs-linux-gnueabi_gcc-4.1.2_glibc-2.5_binutils-2.17_kernel-2.6.18.ptxconfig
arm-1136jfs-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.19_kernel-2.6.27-sanitized.ptxconfig
arm-1136jfs-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.19_kernel-2.6.27-sanitized.ptxconfig.old
arm-cortexa8-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
armeb-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_binutils-2.17_kernel-2.6.18.ptxconfig
armeb-xscale-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
...
arm-v4t-linux-gnueabi_gcc-4.1.2_glibc-2.5_binutils-2.17_kernel-2.6.18.ptxconfig
arm-v4t-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
arm-v5te-linux-gnueabi_gcc-4.1.2_glibc-2.5_binutils-2.17_kernel-2.6.18.ptxconfig
arm-v5te-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
arm-v5te_vfp-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
arm-xscale-linux-gnueabi_gcc-4.1.2_glibc-2.5_binutils-2.17_kernel-2.6.18.ptxconfig
arm-xscale-linux-gnueabi_gcc-4.2.3_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
...
# ptxdist select ptxconfigs/\
  arm-v5te-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
# ptxdist menuconfig

In the menuconfig, all can live as it is but in “misc->prefix for installation” we can choose $PRJROOT/tools where $PRJROOT must be manually extended. So with:

# ptxdist go

A part from minor dependencies that we can solve installing software with apt-get, the toolchain is built and the correct prefix will be:

CROSS_COMPILE_OSELAS_v5=$PRJROOT/tools/OSELAS.Toolchain-1.99.3/arm-v5te-linux-gnueabi/\
   gcc-4.3.2-glibc-2.8-binutils-2.18-kernel-2.6.27-sanitized/bin/arm-v5te-linux-gnueabi-

If we assign the environmental variable CROSS_COMPILE=CROSS_COMPILE_OSELAS_v5 the kernel configured by the upper config file and compiled with this toolchain is a good kernel to execute within the qemu-system-arm emulator!

A suitable Root Filesystem

Ok we have a good kernel ad a small initrd filesystem, but we have to develop application to run in the emulated device!

We can use the OSELAS.BSP Phytec phyCORE project installed following the description in Initializing a Linux Embedded Development Host Machine.

Download the platform_config file platformconfig-qemu and the ptxconfig one ptxconfigThiny (that is the normal ptxconfig removing all graphic subsystem for a speedier compilation)

Every two configuration file must be placed in $PRJROOT/build-BSP/OSELAS.BSP-Phytec-phyCORE-12-1/configs so with:

# cd $PRJROOT/build-BSP/OSELAS.BSP-Phytec-phyCORE-12-1/
# ptxdist select configs/ptxconfigThiny
# ptxdist platform configs/platformconfig-qemu
# ptxdist toolchain $CROSS_COMPILE_OSELAS_v5
# ptxdist go
# ptxdist images

In  $PRJROOT/build-BSP/OSELAS.BSP-Phytec-phyCORE-12-1/platform-phyCORE-qemu/images/ we will find the root.ext2 image, ready to be the SD/MMC image of the qemu device!

Running qemu

If in the $PRJROOT directory we create the images/phyCORE directory and we put all the necessary:

# cd $PRJROOT
# mkdir -p images/phyCORE
# cp (kernel_path)/arch/arm/boot/zImage images/phyCORE/
# cp $PRJROOT/build-BSP/OSELAS.BSP-Phytec-phyCORE-12-1/platform-phyCORE-qemu/images/root.ext2\
  images/phyCORE/

then we can start qemu:

# qemu-system-arm -kernel images/phyCORE/zImage -sd images/phyCORE/root.ext2 \
  -nographic -append "console=ttyAMA0 root=/dev/mmcblk0"

Results

In results we have a complete developing environment: emulator, toolchain, kernel, software ecosystem.

Kernel modification that do not deal with the hardware abstraction layer can be well developed in the emulator and tested by ad-hoc software inserted in the phyCORE-qemu distribution!

Advertisements

Written by Alberto!

25/11/2009 at 5:01 pm